00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013 #include <ldns/config.h>
00014
00015 #include <ldns/rdata.h>
00016 #include <ldns/rr.h>
00017 #include <ldns/util.h>
00018 #include <strings.h>
00019 #include <stdlib.h>
00020 #include <stdio.h>
00021 #include <sys/time.h>
00022 #include <time.h>
00023
00024 #ifdef HAVE_SSL
00025 #include <openssl/rand.h>
00026 #endif
00027
00028
00029 void
00030 xprintf_rdf(ldns_rdf *rd)
00031 {
00032
00033 fprintf(stderr, "size\t:%u\n", (unsigned int)ldns_rdf_size(rd));
00034 fprintf(stderr, "type\t:%u\n", (unsigned int)ldns_rdf_get_type(rd));
00035 fprintf(stderr, "data\t:[%.*s]\n", (int)ldns_rdf_size(rd),
00036 (char*)ldns_rdf_data(rd));
00037 }
00038
00039 void
00040 xprintf_rr(ldns_rr *rr)
00041 {
00042
00043 uint16_t count, i;
00044
00045 count = ldns_rr_rd_count(rr);
00046
00047 for(i = 0; i < count; i++) {
00048 fprintf(stderr, "print rd %u\n", (unsigned int) i);
00049 xprintf_rdf(rr->_rdata_fields[i]);
00050 }
00051 }
00052
00053 void xprintf_hex(uint8_t *data, size_t len)
00054 {
00055 size_t i;
00056 for (i = 0; i < len; i++) {
00057 if (i > 0 && i % 20 == 0) {
00058 printf("\t; %u - %u\n", (unsigned int) i - 19, (unsigned int) i);
00059 }
00060 printf("%02x ", (unsigned int) data[i]);
00061 }
00062 printf("\n");
00063 }
00064
00065 ldns_lookup_table *
00066 ldns_lookup_by_name(ldns_lookup_table *table, const char *name)
00067 {
00068 while (table->name != NULL) {
00069 if (strcasecmp(name, table->name) == 0)
00070 return table;
00071 table++;
00072 }
00073 return NULL;
00074 }
00075
00076 ldns_lookup_table *
00077 ldns_lookup_by_id(ldns_lookup_table *table, int id)
00078 {
00079 while (table->name != NULL) {
00080 if (table->id == id)
00081 return table;
00082 table++;
00083 }
00084 return NULL;
00085 }
00086
00087 int
00088 ldns_get_bit(uint8_t bits[], size_t index)
00089 {
00090
00091
00092
00093
00094 return (int) (bits[index / 8] & (1 << (7 - index % 8)));
00095 }
00096
00097 int
00098 ldns_get_bit_r(uint8_t bits[], size_t index)
00099 {
00100
00101
00102
00103
00104 return (int) bits[index / 8] & (1 << (index % 8));
00105 }
00106
00107 void
00108 ldns_set_bit(uint8_t *byte, int bit_nr, bool value)
00109 {
00110
00111
00112
00113
00114 if (bit_nr >= 0 && bit_nr < 8) {
00115 if (value) {
00116 *byte = *byte | (0x01 << bit_nr);
00117 } else {
00118 *byte = *byte & ~(0x01 << bit_nr);
00119 }
00120 }
00121 }
00122
00123 int
00124 ldns_hexdigit_to_int(char ch)
00125 {
00126 switch (ch) {
00127 case '0': return 0;
00128 case '1': return 1;
00129 case '2': return 2;
00130 case '3': return 3;
00131 case '4': return 4;
00132 case '5': return 5;
00133 case '6': return 6;
00134 case '7': return 7;
00135 case '8': return 8;
00136 case '9': return 9;
00137 case 'a': case 'A': return 10;
00138 case 'b': case 'B': return 11;
00139 case 'c': case 'C': return 12;
00140 case 'd': case 'D': return 13;
00141 case 'e': case 'E': return 14;
00142 case 'f': case 'F': return 15;
00143 default:
00144 return -1;
00145 }
00146 }
00147
00148 char
00149 ldns_int_to_hexdigit(int i)
00150 {
00151 switch (i) {
00152 case 0: return '0';
00153 case 1: return '1';
00154 case 2: return '2';
00155 case 3: return '3';
00156 case 4: return '4';
00157 case 5: return '5';
00158 case 6: return '6';
00159 case 7: return '7';
00160 case 8: return '8';
00161 case 9: return '9';
00162 case 10: return 'a';
00163 case 11: return 'b';
00164 case 12: return 'c';
00165 case 13: return 'd';
00166 case 14: return 'e';
00167 case 15: return 'f';
00168 default:
00169 abort();
00170 }
00171 }
00172
00173 int
00174 ldns_hexstring_to_data(uint8_t *data, const char *str)
00175 {
00176 size_t i;
00177
00178 if (!str || !data) {
00179 return -1;
00180 }
00181
00182 if (strlen(str) % 2 != 0) {
00183 return -2;
00184 }
00185
00186 for (i = 0; i < strlen(str) / 2; i++) {
00187 data[i] =
00188 16 * (uint8_t) ldns_hexdigit_to_int(str[i*2]) +
00189 (uint8_t) ldns_hexdigit_to_int(str[i*2 + 1]);
00190 }
00191
00192 return (int) i;
00193 }
00194
00195 const char *
00196 ldns_version(void)
00197 {
00198 return (char*)LDNS_VERSION;
00199 }
00200
00201
00202 static const int mdays[] = {
00203 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
00204 };
00205
00206 #define LDNS_MOD(x,y) (((x) % (y) < 0) ? ((x) % (y) + (y)) : ((x) % (y)))
00207 #define LDNS_DIV(x,y) (((x) % (y) < 0) ? ((x) / (y) - 1 ) : ((x) / (y)))
00208
00209 static int
00210 is_leap_year(int year)
00211 {
00212 return LDNS_MOD(year, 4) == 0 && (LDNS_MOD(year, 100) != 0
00213 || LDNS_MOD(year, 400) == 0);
00214 }
00215
00216 static int
00217 leap_days(int y1, int y2)
00218 {
00219 --y1;
00220 --y2;
00221 return (LDNS_DIV(y2, 4) - LDNS_DIV(y1, 4)) -
00222 (LDNS_DIV(y2, 100) - LDNS_DIV(y1, 100)) +
00223 (LDNS_DIV(y2, 400) - LDNS_DIV(y1, 400));
00224 }
00225
00226
00227
00228
00229 time_t
00230 ldns_mktime_from_utc(const struct tm *tm)
00231 {
00232 int year = 1900 + tm->tm_year;
00233 time_t days = 365 * ((time_t) year - 1970) + leap_days(1970, year);
00234 time_t hours;
00235 time_t minutes;
00236 time_t seconds;
00237 int i;
00238
00239 for (i = 0; i < tm->tm_mon; ++i) {
00240 days += mdays[i];
00241 }
00242 if (tm->tm_mon > 1 && is_leap_year(year)) {
00243 ++days;
00244 }
00245 days += tm->tm_mday - 1;
00246
00247 hours = days * 24 + tm->tm_hour;
00248 minutes = hours * 60 + tm->tm_min;
00249 seconds = minutes * 60 + tm->tm_sec;
00250
00251 return seconds;
00252 }
00253
00254 time_t
00255 mktime_from_utc(const struct tm *tm)
00256 {
00257 return ldns_mktime_from_utc(tm);
00258 }
00259
00260 #if SIZEOF_TIME_T <= 4
00261
00262 static void
00263 ldns_year_and_yday_from_days_since_epoch(int64_t days, struct tm *result)
00264 {
00265 int year = 1970;
00266 int new_year;
00267
00268 while (days < 0 || days >= (int64_t) (is_leap_year(year) ? 366 : 365)) {
00269 new_year = year + (int) LDNS_DIV(days, 365);
00270 days -= (new_year - year) * 365;
00271 days -= leap_days(year, new_year);
00272 year = new_year;
00273 }
00274 result->tm_year = year;
00275 result->tm_yday = (int) days;
00276 }
00277
00278
00279 static const int leap_year_mdays[] = {
00280 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
00281 };
00282
00283 static void
00284 ldns_mon_and_mday_from_year_and_yday(struct tm *result)
00285 {
00286 int idays = result->tm_yday;
00287 const int *mon_lengths = is_leap_year(result->tm_year) ?
00288 leap_year_mdays : mdays;
00289
00290 result->tm_mon = 0;
00291 while (idays >= mon_lengths[result->tm_mon]) {
00292 idays -= mon_lengths[result->tm_mon++];
00293 }
00294 result->tm_mday = idays + 1;
00295 }
00296
00297 static void
00298 ldns_wday_from_year_and_yday(struct tm *result)
00299 {
00300 result->tm_wday = 4
00301 + LDNS_MOD((result->tm_year - 1970), 7) * LDNS_MOD(365, 7)
00302 + leap_days(1970, result->tm_year)
00303 + result->tm_yday;
00304 result->tm_wday = LDNS_MOD(result->tm_wday, 7);
00305 if (result->tm_wday < 0) {
00306 result->tm_wday += 7;
00307 }
00308 }
00309
00310 static struct tm *
00311 ldns_gmtime64_r(int64_t clock, struct tm *result)
00312 {
00313 result->tm_isdst = 0;
00314 result->tm_sec = (int) LDNS_MOD(clock, 60);
00315 clock = LDNS_DIV(clock, 60);
00316 result->tm_min = (int) LDNS_MOD(clock, 60);
00317 clock = LDNS_DIV(clock, 60);
00318 result->tm_hour = (int) LDNS_MOD(clock, 24);
00319 clock = LDNS_DIV(clock, 24);
00320
00321 ldns_year_and_yday_from_days_since_epoch(clock, result);
00322 ldns_mon_and_mday_from_year_and_yday(result);
00323 ldns_wday_from_year_and_yday(result);
00324 result->tm_year -= 1900;
00325
00326 return result;
00327 }
00328
00329 #endif
00330
00331 static int64_t
00332 ldns_serial_arithmitics_time(int32_t time, time_t now)
00333 {
00334 int32_t offset = time - (int32_t) now;
00335 return (int64_t) now + offset;
00336 }
00337
00338
00339 struct tm *
00340 ldns_serial_arithmitics_gmtime_r(int32_t time, time_t now, struct tm *result)
00341 {
00342 #if SIZEOF_TIME_T <= 4
00343 int64_t secs_since_epoch = ldns_serial_arithmitics_time(time, now);
00344 return ldns_gmtime64_r(secs_since_epoch, result);
00345 #else
00346 time_t secs_since_epoch = ldns_serial_arithmitics_time(time, now);
00347 return gmtime_r(&secs_since_epoch, result);
00348 #endif
00349 }
00350
00362 int
00363 ldns_init_random(FILE *fd, unsigned int size)
00364 {
00365
00366
00367 FILE *rand_f;
00368 uint8_t *seed;
00369 size_t read = 0;
00370 unsigned int seed_i;
00371 struct timeval tv;
00372
00373
00374
00375 if (size < (unsigned int) sizeof(seed_i)){
00376 size = (unsigned int) sizeof(seed_i);
00377 }
00378
00379 seed = LDNS_XMALLOC(uint8_t, size);
00380 if(!seed) {
00381 return 1;
00382 }
00383
00384 if (!fd) {
00385 if ((rand_f = fopen("/dev/urandom", "r")) == NULL) {
00386
00387 if ((rand_f = fopen("/dev/random", "r")) == NULL) {
00388
00389
00390 for (read = 0; read < size; read++) {
00391 gettimeofday(&tv, NULL);
00392 seed[read] = (uint8_t) (tv.tv_usec % 256);
00393 }
00394 } else {
00395 read = fread(seed, 1, size, rand_f);
00396 }
00397 } else {
00398 read = fread(seed, 1, size, rand_f);
00399 }
00400 } else {
00401 rand_f = fd;
00402 read = fread(seed, 1, size, rand_f);
00403 }
00404
00405 if (read < size) {
00406 LDNS_FREE(seed);
00407 if (!fd) fclose(rand_f);
00408 return 1;
00409 } else {
00410 #ifdef HAVE_SSL
00411
00412
00413 RAND_seed(seed, (int) size);
00414 #else
00415
00416
00417
00418 memcpy(&seed_i, seed, sizeof(seed_i));
00419 srandom(seed_i);
00420 #endif
00421 LDNS_FREE(seed);
00422 }
00423
00424 if (!fd) {
00425 if (rand_f) fclose(rand_f);
00426 }
00427
00428 return 0;
00429 }
00430
00435 uint16_t
00436 ldns_get_random(void)
00437 {
00438 uint16_t rid = 0;
00439 #ifdef HAVE_SSL
00440 if (RAND_bytes((unsigned char*)&rid, 2) != 1) {
00441 rid = (uint16_t) random();
00442 }
00443 #else
00444 rid = (uint16_t) random();
00445 #endif
00446 return rid;
00447 }
00448
00449
00450
00451
00452
00453 char *
00454 ldns_bubblebabble(uint8_t *data, size_t len)
00455 {
00456 char vowels[] = { 'a', 'e', 'i', 'o', 'u', 'y' };
00457 char consonants[] = { 'b', 'c', 'd', 'f', 'g', 'h', 'k', 'l', 'm',
00458 'n', 'p', 'r', 's', 't', 'v', 'z', 'x' };
00459 size_t i, j = 0, rounds, seed = 1;
00460 char *retval;
00461
00462 rounds = (len / 2) + 1;
00463 retval = LDNS_XMALLOC(char, rounds * 6);
00464 if(!retval) return NULL;
00465 retval[j++] = 'x';
00466 for (i = 0; i < rounds; i++) {
00467 size_t idx0, idx1, idx2, idx3, idx4;
00468 if ((i + 1 < rounds) || (len % 2 != 0)) {
00469 idx0 = (((((size_t)(data[2 * i])) >> 6) & 3) +
00470 seed) % 6;
00471 idx1 = (((size_t)(data[2 * i])) >> 2) & 15;
00472 idx2 = ((((size_t)(data[2 * i])) & 3) +
00473 (seed / 6)) % 6;
00474 retval[j++] = vowels[idx0];
00475 retval[j++] = consonants[idx1];
00476 retval[j++] = vowels[idx2];
00477 if ((i + 1) < rounds) {
00478 idx3 = (((size_t)(data[(2 * i) + 1])) >> 4) & 15;
00479 idx4 = (((size_t)(data[(2 * i) + 1]))) & 15;
00480 retval[j++] = consonants[idx3];
00481 retval[j++] = '-';
00482 retval[j++] = consonants[idx4];
00483 seed = ((seed * 5) +
00484 ((((size_t)(data[2 * i])) * 7) +
00485 ((size_t)(data[(2 * i) + 1])))) % 36;
00486 }
00487 } else {
00488 idx0 = seed % 6;
00489 idx1 = 16;
00490 idx2 = seed / 6;
00491 retval[j++] = vowels[idx0];
00492 retval[j++] = consonants[idx1];
00493 retval[j++] = vowels[idx2];
00494 }
00495 }
00496 retval[j++] = 'x';
00497 retval[j++] = '\0';
00498 return retval;
00499 }